1. What inspired you to conduct this study?
First off, pachycephalosaur tails, like the rest of their postcranial skeletons, are rare. Often with dinosaurs you find the rest of the skeleton but are missing the most important part, the head. This is not true for pachycephalosaurs, which we know almost everything about based on the skull. You can count on one hand the number of partial skeletons known (and these are partial skeletons). What we know about pachycephalosaur skeletons is limited to these few specimens. They are special in that when preserved they show a unique morphology of having a halo of superficial “W” shaped elements forming a cylinder around the entire circumference of the tail. This is not seen in other dinosaur groups, or any other tetrapod. That is not the only odd thing though; they lack the deep longitudinal or paraxial tendons seen in most other ornithischian groups and they have elongated and highly bowed caudal ribs. These three things may be related, but that is not yet clear.
This is an interesting question with a bit of a complex answer. All of these structures are similar in that they are not endochondral bones, that is they do not develop from a cartilaginous precursor, which is the case with the majority of the postcranial bones in most taxa.
Gastralia are dermal or intramembranous bones that are associated with the abdominal musculature, and can be associated with respiration. They were likely the primitive condition for tetrapods but today are restricted to Crocodylia, Sphenodon, and possible the plastron of turtles (Classens, 2004).
The term ‘ossified tendons’ describes a variety of structures including ossified myorhabdoi. Although this term would include any ossification of the connective tissues articulating muscles to bones, its usage in dinosaurs, particularly ornithischians, usually refers to longitudinal paraxial structures along the dorsal or caudal vertebral series. These tendons often have the pattern of either a trellis or longitudinal bundles, can be epaxial or hypaxial, and are usually closely associated with the vertebrae (Organ 2006). Ossified myorhabdoi are restricted to the caudal musculature, and are essentially ossified myosepta. Unlike the majority of the paraxial tendons, these are superficial, forming a halo around the circumference of the tail where the transverse skeletogenous septum intersects with the integument, and preserve a morphology reminiscent of the undifferentiated myoseptal musculature of fish. They are also different in their histological structure (Organ and Adams, 2005). We still know very little about ossified myorhabdoi and hopefully discovery of additional specimens and more research on extant taxa will reveal more regarding their significance.
The caudal basket likely had significant implications for the posture and locomotion of pachycephalosaurs. It has been suggested by previous authors that it helped the tail to act as a tripodal prop, potentially during intraspecific behaviour. It would also have greatly stiffened the tail. Our analysis is consistent with these interpretations, and in that manner is consistent with the idea of head-butting behaviour in pachycephalosaurs.
The presence of the caudal basket has also been used to support the idea of agonistic flank butting behaviour in pachycephalosaurs (Goodwin et al., 1998), with the caudal basket acting as armor. We suggest that the morphology of the myorhabdoi is not consistent with armor seen in other groups, and this function in pachycephalosaurs seems unlikely.